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Abstract
The southernmost archipelago of the Americas is dominated by invasive mammals that outnumber their native counter-
parts. Despite the relatively low ability of most invasive mammals to cross cold sea water channels, invaders are appar-
ently colonizing new islands. Our objective was to provide an assessment of the expansion of invasive mammals within 
these sub-Antarctic ecosystems, determine whether human-mediated movement of invasive species is a plausible dispersal 
mechanism, and identify areas likely to be colonized in the near future. We report a decade of fieldwork (2006–2017) in 
44 sites on 13 islands within the Cape Horn Biosphere Reserve including opportunistic and systematic camera trapping, 
carnivore diet, questionnaires, small mammal trapping, and walks/transects. We found new records of invasive mammals on 
seven islands, particularly for American mink (Neovison vison) and American beaver (Castor canadensis). Interviews with 
fishermen showed that mink, dogs (Canis familiaris), and small rodents are likely passengers in vessels. Finally, species 
distribution models revealed that the putative invasive-free Cape Horn National Park (55°S) is suitable for several invasive 
species, suggesting a high risk of invasion if species are introduced. We conclude that it is urgent to implement barriers to 
dispersal to prevent further invasion. In the case of dogs and cats (Felis catus), the first step should be control actions that 
target pet owners. Finally, we highlight the need of systematic, long-term biodiversity monitoring and citizen science in the 
Cape Horn Archipelago and common conservation guidelines for the terrestrial sub-Antarctic ecosystems.

Keywords Assisted dispersal · Conservation · Free-ranging domestic animals · Islands · Monitoring · Range expansion · 
Vertebrates

Introduction

In the era of globalization, invasive species are increasing 
in abundance and diversity (Seebens et al. 2017), mainly as 
a consequence of human trade and transport (Hulme 2009). 
Currently, almost all ecosystems, even in remote places, 
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include multiple invasive species (Hobbs et al. 2006) with 
significant ecological and socio-economic consequences 
(Simberloff et al. 2013; Bellard et al. 2016, but see Jeschke 
et al. 2014). Vertebrates, once introduced to a new range, 
have a high potential to establish themselves and spread 
(~ 50% success rate in Europe and North America, Jeschke 
and Strayer 2005), with invasive mammal predators (in par-
ticular cats, rodents, dogs, and pigs) mostly contributing to 
local species decline and extinction (Doherty et al. 2016). 
The impacts of mammalian invaders have been more severe 
on islands (Sax and Gaines 2008; Doherty et al. 2016, but 
see Quillfeldt et al. 2008), likely related to the absence of 
prey responses to predation risk due to the lack of co-evolu-
tion (Shea and Chesson 2002; Sih et al. 2010).

Once a non-native species becomes established, eradi-
cation and even control is extremely difficult. A few small 
islands offer the only examples of effective eradication of 
invasive species (e.g., Howald et al. 2007; Jones et al. 2016; 
Amos 2018), but eradication costs increase with island size 
(Martins et al. 2006; Holmes et al. 2015). Therefore, even 
though eradication may be technically feasible, funding 
becomes a key challenge (Howald et al. 2007). In addition, 
new and growing challenges for invasive species manage-
ment are emerging. For example, conflicts associated with 
invasive species management are becoming increasingly 
common (Estévez et al. 2015; Crowley et al. 2017) and ani-
mal welfare needs to be considered when planning control 
actions (Dubois et al. 2017). Consequently, prevention is a 
fundamental and cost-effective way to cope with biological 
invasions.

In this context, understanding the mechanisms of invasive 
species dispersion is critical to prevent future introductions 
and range expansions (Simberloff et al. 2013). This is par-
ticularly true for Antarctic and sub-Antarctic ecosystems 
which have been little exposed to species introductions until 
recently, compared to other regions of the planet (Frenot 
et al. 2005; Hughes et al. 2015). During the last centuries, 
the terrestrial sub-Antarctic ecosystems experienced several 
introductions of plant and domestic animals resulting from 
human incursions (Russ 2007). Nowadays, the importance 
of preventing the introduction of non-native species to the 
Southern Ocean Islands is recognized, and partly set in 
practice via quarantine procedures, boot and clothing decon-
tamination, and restricted access, but with significant room 
for improvement (de Villiers et al. 2006). In archipelagic 
environments, identifying areas of potential expansion of 
invasive species is crucial for prevention measures. In this 
respect, species distribution models can help predict where a 
species will spread next (Barbet-Massin et al. 2018, but see 
Václavík and Meentemeyer 2012), and that way serve as a 
tool to inform conservation planning (Guisan et al. 2013).

Fifteen years ago, the archipelagic Cape Horn Biosphere 
Reserve (CHBR), located at the extreme of South America 

within the sub-Antarctic Magellanic forest ecoregion, was 
identified as one of the world’s last wilderness areas remain-
ing in the twenty-first century (Mittermeier et al. 2003). 
Today, this region faces several growing pressures (Rozzi 
et al. 2012), including biological invasions (as defined by 
Valéry et al. 2008). Wild invasive and free-ranging domestic 
mammals (i.e., owned, abandoned, feral), outnumber their 
native counterparts in the CHBR (12 vs. 10 spp., Anderson 
et al. 2006), and many ground-nesting birds are impacted 
by introduced predators, particularly on islands that lack 
native terrestrial predators (e.g., Schüttler et al. 2009). Roads 
and other human-made infrastructures, as well as tourism 
activities are increasing in the CHBR (Sernatur 2014). This 
creates new potential pathways for the arrival and spread 
of non-native species (Hulme et al. 2008; Anderson et al. 
2015).

In this article, we provide an updated assessment of the 
current distribution and potential expansion of wild inva-
sive and free-roaming domestic mammals in the southern-
most islands of the Americas. Our specific goals are to: (1) 
assess the expansion of invasive and domestic mammals in 
the CHBR during the last decade (2006–2017), (2) assess 
whether human-mediated movement of invasive species is 
a plausible dispersal mechanism, (3) identify areas that are 
more suitable for invasive mammals currently present in the 
CHBR and therefore likely to be colonized by them, and (4) 
suggest priority areas for conservation that need to imple-
ment invasive species’ monitoring and control programs.

Materials and methods

Study area

The study focuses on the CHBR (19,172 km2 terrestrial sur-
face), Chile (55°S) (Fig. 1), which is located at the south-
ern end of the Magellanic sub-Antarctic ecoregion (Rozzi 
et al. 2012). The dominant habitats within this ecoregion are 
forests of southern beech (Nothofagus spp.) and Winter´s 
bark (Drimys winteri), Magellanic tundra (Sphagnum spp.), 
high-Andean habitats, glaciers, and scrublands (Pisano 
1977; Rozzi et al. 2012). The climate is hyperhumid, with 
cool temperatures and a strong precipitation gradient from 
2500 mm in the west areas to 500 mm in the east (Tuhkanen 
et al. 1990). During winter, streams and lakes are ice-bound.

The total human population of the CHBR is 2200 inhabit-
ants, concentrated in Puerto Williams on Navarino Island, 
and to a lesser extent in Puerto Toro on the eastern coast 
of the island. On Navarino, there are only eight permanent 
family-size farms throughout the island´s rural zone, and 
infrastructure is limited to only one dirt road along the 
northern coast. The Chilean navy maintains 11 navy posts in 
strategically important sites within the CHBR, operated by 
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a new navy family each year. The other permanently inhab-
ited sites include Kanasaka (farm on Hoste Island), Dos de 
Mayo (border post), María Cove (farm), and Ferrari Cove 
(abandoned farm, uninhabited since 2013). The latter three 
are located in or close to Yendegaia National Park (Fig. 1).

The main economic activities in the CHBR include arti-
sanal fishing, small-scale livestock farming, and tourism. 
Currently, the area is facing economic stimuli by the Chilean 
government, such as the construction of docks for cruise lin-
ers, enlargement of the airport runway, land parceling and 
settling, and new roads (total ~ 190 km, Sernatur 2014), as 
well as salmon farming (Kol 2018). All of these activities 
will bring in new opportunities for species to disperse into 
the area via quick increase in air, ground, and sea traffic.

Monitoring

Here, we report a decade of fieldwork (2006–2017) that 
includes previously published data, unreported data from 
previously used datasets, and novel data. As our research 
required access of isolated locations that are climatically and 
geographically hostile to scientific research procedures, we 
opted to use multiple sources of information that were suit-
able in this context. These included opportunistic (i.e., non-
systematic) and systematic camera trapping, carnivore diet, 
questionnaires, small mammal trapping, and walks/transects. 
In total, we monitored 44 sites (landing points) on 13 islands 

within the CHBR (Fig. 1). Remote islands and the Chilean 
portion of Tierra del Fuego were visited during six 4–14-day 
boating expeditions and during five 3–10-day trips with the 
Chilean navy to each of their 11 posts. We employed more 
intensive fieldwork on Navarino Island due to the logistical 
facilities as the island hosts the only major settlement in the 
CHBR and the Research Center of the Sub-Antarctic Biocul-
tural Conservation Program (detailed monitoring overview 
of published and new data in Online Resource 1).

Camera trapping

We used opportunistic and published data from grid-based 
camera trapping to detect invasive carnivores (cats Felis 
catus, dogs Canis familiaris, American mink Neovison 
vison) using canned fish as bait or commercial lures. Oppor-
tunistic sampling was employed in the expeditions where the 
installation of camera traps was adapted to the duration of 
the stay and accessibility of the terrain and could not follow 
a random or systematic sampling. We collected data from 
a grid of 30 cameras on Navarino Island, during a 16-day 
period in summer 2013 (480 trap days). We set 22 cameras 
in the surrounding area of 11 navy outposts (two cameras 
per site) in the cold season 2015 and during the warm season 
2016 (except for Horn Island) for an exposure period of two 
months each (cumulative effort: 2586 trap days). In Yende-
gaia National Park, 38 cameras, each separated by ~ 400 m, 

Fig. 1  Study area in southern Chile
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were operated for up to six days in 2017 (cumulative effort: 
187 trap days). The effort per site ranged between 15 and 
522 trap nights (Online Resource 1). We acknowledge that—
at site level—these efforts were lower than recommended 
for inventory purposes (Rovero et al. 2013). We added the 
following published data to this data base: photos from 29 
cameras at three glaciers on Tierra del Fuego (87 trap days, 
Crego et al. 2015) and photos from systematic grid sampling 
on Navarino Island (3642 trap nights, Crego et al. 2018a, 
Online Resource 1).

Carnivore diet

We used published accounts of mink feces (n = 605) as 
indirect signs for the presence of mink on Navarino Island 
(Schüttler et al. 2008; Crego et al. 2016) and dog diet (n = 53 
feces from different islands, Schüttler et al. 2018) as a source 
of information on the potential ingestion of invasive prey or 
carcasses, such as American beavers (Castor canadensis), 
cattle (Bos taurus), muskrat (Ondatra zibethicus), European 
rabbits (Oryctolagus cuniculus), and rats (Rattus norvegicus, 
see Online Resource 1).

Questionnaires

To record sightings of native and invasive mammal species 
we administered questionnaires to navy families at their out-
posts (n = 22) during 2015/2016 and with artisanal fishermen 
targeting southern king crabs (Lithodes santolla) (n = 19) 
in Puerto Williams during 2016. Navy families were vis-
ited during the regular provisioning journeys of the Chilean 
navy; fishermen were contacted following a snowballing 
procedure (e.g., Marshall et al. 2007). Informed consent was 
obtained from all participants before completing the ques-
tionnaires. Those contained an invitation to list sightings 
(number of individuals, month of sighting, island, habitat) 
next to the photos of invasive mammals (beaver, gray fox 
Lycalopex griseus, mink, muskrat, rabbit), free-roaming 
domestic mammals (cat, cow Bos taurus, dog, horse Equus 
caballus, pig Sus scrofa), and native mammals (culpeo fox 
Lycalopex culpaeus, guanaco Lama guanicoe). For the 
fishermen, we added questions related to the possible unin-
tentional transport of mink/other animals and the transport 
of pets among fishing sites. We also asked them whether 
they had ever left an animal behind on an island. The ques-
tionnaires were administered in a face-to-face interview 
approach at the family’s or fisherman’s home or boat and 
took approximately 10–15 min. Each navy family and fisher-
man that was approached opted to participate in the survey. 
To complement the relatively low number of data for cats 
and dogs for modeling the areas of invasion risk, we used 

published georeferenced data on unaccompanied dog and cat 
sightings on Navarino Island (n = 227, Schüttler et al. 2018).

Small mammal trapping

We opportunistically captured small rodents using live-cap-
ture Sherman traps during an expedition to Tierra del Fuego 
in 2015, where we deployed two grids of 22–28 traps at three 
locations for a period of three days, baited with rolled oats. 
To complement this data, we included published accounts 
of rodent trapping on Navarino Island (total of 7396 trap 
nights in Crego (2017) and Crego et al. (2018b), see Online 
Resource 1).

Walks and transects

During opportunistic walks at each stop of the boating expe-
ditions, maritime replenishment of navy outposts and dur-
ing field work on Navarino Island, we took notes on the 
evidence (sightings, tracks, feces, habitat modification) 
of larger invasive mammals (beaver, mink, muskrat, and 
domestic animals). Note that these records were collected 
as presence-only data without following a systematic design. 
The total distance walked was ~ 310 km (Online Resource 
1). Finally, we obtained data on mink, beaver, and muskrat 
presence from three glaciers on Tierra del Fuego (Crego 
et al. 2015) and from 75 200-m-transects on Navarino Island 
(Crego et al. 2016).

Areas of invasion risk

We assessed potential areas for future invasion within the 
CHBR that possess similar environmental conditions to 
those of current locations of invasive species. To do this, 
we ran species distribution models for six established inva-
sive species across the CHBR (American beaver, American 
mink, cow, dog, horse, and muskrat), for which we were able 
to collect an adequate amount of georeferenced locations 
within our study area (n > 15, van Proosdij et al. 2016). We 
implemented MaxEnt models (Phillips et al. 2006) in the R 
Environment (R Development Core Team 2016). MaxEnt is 
a machine-learning method that reduces the relative entropy 
of the probability density of the environmental covariates at 
locations where the species is present relative to the prob-
ability density at random sampled background points (Elith 
et al. 2011). MaxEnt is widely recognized as the most reli-
able methodology when only presence data is available 
(Phillips et al. 2006; Elith et al. 2010).

We used a set of predictor variables that we thought a pri-
ori were important in modeling habitat suitability for the six 
species: We obtained 19 climatic variables from the World-
Clim database, at 30 arc-seconds (~ 1 km) resolution (Hij-
mans et al. 2005). Given the importance of the altitudinal 
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gradient in the distribution of local habitats and diversity 
(Rozzi et al. 2012), we included elevation and slope, which 
we derived from a 90-m digital elevation model (DEM) 
(Farr et al. 2007). We resampled the DEM raster to match 
the ~ 1 km spatial resolution of the climatic data. To consider 
the vegetation productivity of the system in the models we 
used a MODIS/Terra NDVI image (MOD13.A2; 1 km reso-
lution). Using Google Earth Engine (Gorelick et al. 2017), 
we calculated the mean NDVI value for the period between 
1 Jan 2008 and 1 Jan 2017. Given that the region is archi-
pelagic, species might extend their distributions from the 
coastlines; therefore, we included Euclidean distance to the 
coast as a covariate. We also calculated the Euclidean dis-
tance to human settlements (farms and towns). For the musk-
rat, we added the habitat suitability model of the beaver as a 
predictor variable, given the facilitation effect that beavers 
have on muskrats in the study area (Crego et al. 2016). To 
avoid collinearity, we finally selected seven predictor vari-
ables (Table 1, visual overview in Online Resource 2) that 
we considered more biologically relevant for the distribu-
tion of mammals in the CHBR and that presented Spearman 
correlations < 0.7. We selected mean annual precipitation 
over Euclidean distance to human settlements (ρ = 0.91) to 
identify potential areas with similar environmental condi-
tions to those where the presence of invasive mammals is 
known. We performed all geospatial work using the raster 
package in the R programming language (R Development 
Core Team 2016).

For modeling in MaxEnt, we subsampled the location 
points for each species to ensure that each location was sepa-
rated by > 4 km, to maintain, what we considered, spatial 
independence. Due to the lack of infrastructure throughout 
the CHBR, more intensive monitoring took place around 
human settlements. We addressed this bias by creating 
background points with a similar sampling bias (Phillips 
et al. 2009). We randomly selected 5429 background points 
from 10-km buffer areas around species records (including 
Chair and Snipe Islands, where no invasive species were 

detected), assuming that these areas would characterize 
areas of potential dispersion and occupancy (Elith et al. 
2011). To validate the models, we split our data set into 
an 80% training data set and 20% validation data set for 
each species (Fielding and Bell 1997). To assess prediction 
accuracy of each model, we used the area under the curve 
(AUC) of the receiver-operating characteristic (ROC) plot 
(Fielding and Bell 1997). Models with AUC values close 
to 1.0 were interpreted as giving perfect predictions, while 
models with AUC values ≤ 0.5 should have no predictive 
ability (Araújo et al. 2005). For each species, we ran 20 
bootstrap replicates. We then predicted a Habitat Suitability 
Index (HSI; logistic output of MaxEnt ranging from 0 to 1, 
with 0 referring to unsuitable habitat and 1 to highly suit-
able areas, Elith et al. 2011) of 1 km spatial resolution for 
each model. We estimated the mean value of the outputs of 
the HSI and AUC scores of all single runs (Marmion et al. 
2009). For each species, we explored different regularization 
coefficients (1, 2, 3) and found that in all cases, the default 
value of 1 performed better (i.e., higher AUC values, Merow 
et al. 2013). We transformed the non-binary HSI results into 
a binary presence/absence format for each species using the 
HSI threshold that maximized the sum of sensitivity (cor-
rect predictions of the occurrence) and specificity (correct 
predictions of the absence, Liu et al. 2013). We calculated 
the threshold as the mean value of all 20 threshold values 
obtained for the 20 individual models for each species.

Finally, to illustrate areas of invasion risk in the CHBR 
we calculated an invasiveness index as the proportion of the 
six species that could be established in each pixel (1 km2 
spatial resolution) of the reserve based on the presence/
absence output models calculated from the current invasive 
species distribution. The index ranges from 0 (no potential 
invasiveness) to 1 (highest suitable habitat for all invasive 
species, i.e., highest invasiveness potential). The final map 
identifies areas of high risk of invasion by currently estab-
lished invasive mammals and thus, serves to guide manage-
ment priorities within the CHBR.

Results

Invasive mammal assessment

We confirmed the presence of 11 invasive mammal species 
in the CHBR (Table 2, and excel list by species and location 
in Online Resource 3). Our results show new detections, 
particularly on the southeastern islands of the CHBR: Picton 
(4 spp.), Nueva (2 spp.), Lennox (2 spp.), and Wollaston (4 
spp., Table 2). There were also new detections on Hoste (1 
spp.), Button (3 spp.), and Bertrand (2 spp.). The mink and 
beaver were the two species with the highest frequency of 
new detections (3 islands), followed by cows, pigs, rabbits, 

Table 1  Selected predictor variables for species distribution modeling 
in the Cape Horn Biosphere Reserve using MaxEnt with a spatial res-
olution of 1 km (mapped covariates in Online Resource 2)

Category Variable Variable description

Climate ISO Isothermality (mean diurnal range/tem-
perature annual range *100)

PRE Annual precipitation (mm)
Topography DC Euclidean distance to marine coast (km)

ELE Elevation (m)
SLO Slope (degrees)

Vegetation NDVI Normalized Difference Vegetation Index
Other BMO Beaver presence/absence MaxEnt output 

(0/1, only for muskrat)
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horses, and muskrats (2 islands each) (Table 2). We decided 
to discard reports of gray foxes by questionnaires due to the 
possibility to be confounded with native culpeo foxes. The 
last record of a rabbit on Navarino was in 2004 (observa-
tion by Anderson et al. 2006). Since 2006, we have neither 
directly observed nor detected this species through camera 
traps. At the following sites, we did not detect invasive spe-
cies during our expeditions: Chair Island, Horn, and Snipe 
(apart from an owned dog).

Considering the data up to this point, the two human-
inhabited islands with major settlements, Tierra del Fuego 
and Navarino, harbor the highest number of invasive mam-
mal species (see also Valenzuela et al. 2014), followed by 
Hoste, Picton, and Lennox (Fig. 2). Comparing the current 
data with earlier publications, almost all studied islands 
apart from Tierra del Fuego and Navarino Island, which 
had already harbored a maximum of mammal species, had 
an increase in the number of mammal species recorded, 
particularly the south-eastern islands; Picton (4 new spe-
cies), Nueva (2), Lennox (2) and Wollaston (4), and also the 
smaller islands along the western coast of Navarino: Button 
(3 new species) and Bertrand (2) (Fig. 3). In contrast, Horn 
Island had no increase and Navarino had one species less 
(rabbit) than in earlier publications.

Based on records from camera traps, we revealed the 
presence of free-ranging cats and dogs on Picton, feral 
horses in Yendegaia National Park, and mink on Lennox 
(Fig. 4). In the case of cats, there was evidence of in situ 
reproduction (Fig. 4a). The cats and the dog were unknown 
to the family at the navy post, as well as to the personnel 
of the temporary military camp, the only settlement on the 
island, suggesting that these animals did not have owners. 

Additionally, owned cats and dogs in navy posts (see Schüt-
tler et al. 2018) were recorded on camera traps on several 
occasions. Free-ranging dogs were detected in Lennox, 
Nueva, Puerto Toro, Snipe, and Wollaston, and a free-rang-
ing cat in Wollaston. Other sites where owned free-ranging 
dogs were sighted was the border post Dos de Mayo and 
María Cove in Yendegaia National Park, and cats and dogs 
on Douglas farm (Navarino).

Transport of invasive mammals

The questionnaires administered to 19 fishermen with a 
mean working experience of 23 years (SD 14 years, range 
1.5 months to 50 years) revealed that they were possible vec-
tors for transporting mink, dogs, and small rodents among 
islands within the CHBR. Fourteen fishermen (74%) have 
seen mink entering their boats during the last five years. Of 
these, ten stated that this had happened more than twice, 
and even regularly or many times (5 participants), probably 
attracted by the bait used for king crabs (n = 3 comments). 
Five fishermen reported they might have transported mink 
several times among fishing sites between 1–10 km (3 par-
ticipants) and 10–50 km (2 participants). Two fishermen 
reported to frequently transporting mice (native or inva-
sive) and rats up to 10 km and even > 100 km. Pets (cats or 
dogs) accompanied 37% of the fishermen (n = 7) occasion-
ally (n = 5) or frequently (n = 2) on their fishing excursions, 
mostly for companionship. Finally, four fishermen reported 
they had lost or left dogs on different islands within the 
CHBR 5–20 years ago.

Table 2  Invasive mammals and their known distributions within the 
major islands of the Cape Horn Biosphere Reserve. The islands are 
ordered from northwest to southeast. Letters refer to the data type; a 
= author observation (direct or indirect), c = camera-trapping, d = 
dog diet, q = questionnaires, r = rodent trapping. Colors refer to the 
current state of detection: light gray = not detected or absent, dark 
gray = earlier literature (Rozzi and Sherriffs 2003; Anderson et  al. 

2006; Valenzuela et al. 2014), black = this study. We did not include 
domestic dogs on Horn Island listed by Valenzuela et  al. (2014), 
because the authors referred to those as pet dogs of the family at the 
navy post. Sightings of invasive mammals on islets can be found in 
Online Resource 3. TDF Tierra del Fuego, GOR Gordon, HOS Hoste, 
NAV Navarino, BUT Button, BER Bertrand, PIC Picton, NUE Nueva, 
LEN Lennox, WOL Wollaston, HOR Horn

Carnivora Canis familiaris Dog a c, q q c, q

Felis catus Cat a, c, q c, q q

Lycalopex griseus Grey fox

Neovison vison American mink a, c, q a c, q a, c, q a, q c, q q c, q q

Cetartiodactyla Bos taurus Cow a, q q a, c, q q

Sus scrofa Pig q a, c, q q q

Lagomorpha Oryctolagus cuniculus European rabbit a, c, q - q c, q

Perissodactyla Equus caballus Horse a, c, q a, c, q a, c, q q

Rodentia Castor canadensis American beaver a, c, q a a, q a, d, q a q q a, c, q a, d, q q

Mus musculus House mouse r

Ondatra zibethicus Muskrat a q a, q a q c, q q

Rattus norvegicus Brown rat

Mammals order Scientific name Common name TDF GOR HOS NAV BUT BER PIC NUE LEN WOL HOR
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Areas of invasion risk

All models performed well (AUC ≥ 0.8) with the exception 
of beavers, for which the model performance was fair, with 
an AUC of 0.71 (Table 3). Habitat suitability for beavers 
was best explained by annual precipitation, elevation, dis-
tance to the coast, and vegetation (NDVI) (Online Resource 
4). For mink and dogs, annual precipitation and vegetation 
played an important role. Habitat suitability for cows was 
best explained by precipitation, distance to the coast, and 
vegetation. For horses, the same variables as for cows as 
well as elevation were important predictors. The HSI for the 
muskrat was mainly affected by vegetation, beaver presence, 
and precipitation (Online Resource 4). The detailed results 
for each species (habitat suitability and presence/absence 
maps) can be found in Online Resource 5.

The areas of potential further invasion show a southeast 
pattern with sites to the southeast presenting a higher prob-
ability than sites to the west within the CHBR. Yendegaia 
National Park, the northeastern coast of Hoste, Navarino 
Island, Picton, Nueva, Lennox, and the Cape Horn National 
Park are areas with the highest risk for the establishment of 
invasive species (Fig. 5). A lower risk of the expansion of 
invasive species exists for the Alberto de Agostini National 
Park.

Discussion

Facing the rapid development and economic interests set in 
the CHBR, here we raise awareness about the expansion of 
invasive species in one of the globe’s last wilderness areas 
and propose priority areas for prevention. During the last 
decade, we did not detect new invasive mammals. However, 
we recorded some of those previously detected (Anderson 
et al. 2006; Valenzuela et al. 2014) on new islands, particu-
larly in the southeast of the reserve (Picton, Nueva, Lennox, 
Wollaston). Logistics in the area are complex; therefore, we 
are not sure whether the new records are related to a lack of 
previous detection or true expansion.

Beavers and mink were detected on three new islands. 
These semi-aquatic species may have a higher probability 
of colonizing an archipelagic environment by their own 
means. Beavers have a linear expansion rate of 2.3–6.3 km/
year in the region and water barriers of several kilometers 
do not represent true barriers, such as the Strait of Magellan 
(Skewes et al. 2006; Anderson et al. 2009). Beavers were 
reported by fishermen to have arrived to Wollaston Island, an 
island that forms part of the Cape Horn National Park. Inter-
estingly, in the same national park (Grevy and Bayly islands) 
the presence of beavers was recently suggested based on the 
analysis of satellite imagery (Huertas-Herrera et al. 2017). 
This archipelago had been earlier hypothesized to represent 

Fig. 2  Number of invasive mammal species within the Cape Horn Biosphere Reserve in 2018 (species listed in Rozzi and Sherriffs 2003; Ander-
son et al. 2006; Valenzuela et al. 2014; Huertas-Herrera et al. 2017, and our own data)
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an intrinsic ecological barrier to colonization due to dif-
ferent physical and biological characteristics compared to 
the rest of the CHBR (Anderson et al. 2006). In continental 
Patagonia, mink have linear expansion rates of 5.5–9 km/
year (Fasola et al. 2011). However, mink have difficulties 
thermoregulating during prolonged (5 min) aquatic activity 
(Williams 1986), and dives usually do not last more than one 
minute (Harrington et al. 2012). This casts doubt on their 
ability to cross cold-water channels of a few kilometers and 
suggests that other dispersal mechanisms could operate for 
mink and other invasive species.

Human-mediated dispersal might play a major role in the 
dispersal of mink, mice, rats, dogs, and cats in the CHBR. 
Fishermen reported to have seen mink on their boats (74%) 
and to have transported them (26%) up to 50 km. Aided 
dispersal of mink by artisanal fishery in South America was 
anecdotally reported by Valenzuela et al. (2014, between 
Navarino and Lennox islands) and is one of the hypoth-
eses that could explain the recent arrival of this mustelid 
on Chiloé Island (41°S) (Vergara and Valenzuela 2015). 
Although, up to this point, house mice and brown rats have 
only been detected on the human-inhabited Tierra del Fuego 
and Navarino islands (Valenzuela et al. 2014, this study), 
the results of our questionnaires strongly suggest that these 
or other rodents were transported to uninhabited islands by 

fishing boats or by other vessels (e.g., sailing boats) that 
frequently stop at islands within the reserve. In 2015, house 
mice were also trapped for the first time in rural areas on 
Navarino Island at distances of 30 km from Puerto Williams 
(Crego 2017). Introducing rats and mice on islands with 
breeding sites of seabirds can have serious consequences 
(e.g., Wanless et al. 2007; Jones et al. 2008). Our interviews 
also revealed that some fishermen were accompanied by 
their pets. Suazo et al. (2013) described this practice for the 
Chilean Chonos archipelago, where fishermen used dogs to 
hunt birds for food or bait, and apparently left them on sev-
eral islets. Indeed, human-mediated dog movement appears 
to be important for the population dynamics of dogs in Chile 
(Villatoro et al. 2016) and other areas of the world (Mort-
ers et al. 2014). However, not only fishermen, but any other 
people visiting the islands of the CHBR might introduce 
pets. Families at navy posts are also allowed to bring their 
pets with them, which are kept free-ranging and might get 
lost or abandoned (Schüttler et al. 2018).

Most of the new detections in our study (75%, n = 20) 
came from questionnaire data and all new records for Ber-
trand, Hoste, and Wollaston were based on fishermen or 
navy family observations. While community-based monitor-
ing is increasingly being considered a powerful instrument 
for conservation science (McKinley et al. 2017), particularly 

Fig. 3  Possible expansion of invasive mammals within the Cape Horn 
Biosphere Reserve. The number of invasive mammal species detected 
per island in this study was contrasted with former publications (spe-

cies listed in Rozzi and Sherriffs 2003; Anderson et al. 2006; Valen-
zuela et al. 2014; Huertas-Herrera et al. 2017) and is displayed as a 
reduction or increase in percentage
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in developing countries (Danielsen et al. 2009), it must be 
recognized that data collected by local people do not always 
reflect the accuracy of data collected by professionals (e.g., 
due to poor identification skills or results shaped by observer 
perceptions, Danielsen et al. 2005). Neither the fishermen 
nor the navy families have been trained in our study, yet 
we doubt that most major sized mammals are prone to  
misidentification. The only important exception is the gray 
fox (see above), and—to a lesser extent—the mink that 

might be confounded with native otters (Lontra felina, L. 
provocax) by non-experts. In any case, further monitoring 
is needed to confirm each of the self-reported observations, 
with a special focus on Wollaston Island within the Cape 
Horn National Park (four new species recorded by question-
naires: beavers, cats, mink, and muskrat).

Based on the invasiveness index, the Cape Horn National 
Park is one of the areas with the highest risk of establish-
ment of the six studied species (Fig. 5), and beavers may 

Fig. 4  Evidence of reproduction of an unowned cat (Felis catus) on 
Picton Island (a), feral horses (Equus caballus) in Yendegaia National 
Park (b), unowned dog (Canis familiaris) on Picton Island (c), and 

American mink (Neovison vison) on Lennox Island (d), Cape Horn 
Biosphere Reserve, all photographed by camera traps

Table 3  Mean area under the curve (AUC) and standard deviation 
(SD) for MaxEnt models for predicting habitat suitability of Ameri-
can beaver (Castor canadensis), American mink (Neovison vison), 

cow (Bos taurus), dog (Canis familiaris), horse (Equus caballus), and 
muskrat (Ondatra zibethicus) in the Cape Horn Biosphere Reserve, 
based on known occurrences

Total n refers to the total of georeferenced locations, the sub-sample contains the number of locations used for modeling (only those locations 
with a distance > 4 km per species). AUC was calculated on an 80% training data set (Training AUC) and 20% validation data set (Test AUC)

Species Total n Sub-sample Training AUC (SD) Test AUC (SD)

American beaver 78 47 0.80 (0.03) 0.71 (0.09)
American mink 572 59 0.88 (0.02) 0.86 (0.04)
Cow 59 23 0.97 (0.01) 0.93 (0.04)
Dog 234 45 0.94 (0.01) 0.91 (0.04)
Horse 98 20 0.95 (0.02) 0.89 (0.10)
Muskrat 43 21 0.95 (0.02) 0.89 (0.05)
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already have arrived there (Huertas-Herrera et al. 2017). 
Although we should await further confirmation by biologi-
cal data, it seems that this National Park has lost, or may 
soon lose, its status of being almost “free of exotics” (only 
three non-native plant species, Rozzi et al. 2004). In the 
recently created Yendegaia National Park, at least seven 
of the 12 invasive mammals are already present (Online 
Resource 3), and this area shows environmental conditions 
that make it prone to further invasion. This is relevant con-
sidering the increase in terrestrial connectivity and tourism 
(Sernatur 2014) that this park will experience in the near 
future. Finally, for the third national park, Alberto de Ago-
stini, invasion risk was low, with only some fiords presenting 
higher risk of invasions, where beaver and mink are already 
present (e.g., Crego et al. 2015). This might be due to the 
higher precipitation and lower vegetation productivity along 
the southwestern gradient of the CHBR (Tuhkanen et al. 
1990, Online Resource 2). However, given that many areas 
of the CHBR remain largely unexplored and data deficient 
(such as the western area), a sampling bias is possibly add-
ing uncertainty to the models. Moreover, the high precipita-
tion in the western study area creates a problem of no-analog 
conditions for model prediction (Fitzpatrick and Hargrove 
2009). Therefore, we caution that model results are only a 

first approximation for science-informed decision-making 
with regard to prevention measures.

While we consider preventing the spread of invasive spe-
cies as a key element in the management of the CHBR, the 
control of some species of major socio-ecological concern 
such as the invasive predators should be urgently debated 
(principles for ethical wildlife control in Dubois et al. 2017). 
As of now, the management of invasive species in the CHBR 
by the Chilean Agriculture and Livestock Service has been 
discontinuous, distant from a societal discourse, and due 
to logistical and financial restraints it has been limited to 
certain areas of Navarino Island. Control efforts via trap-
ping have been concentrated on beavers and mink, with 
hundreds of removed animals (Soto and Cabello 2007; 
Gallardo 2017). However, evaluating the magnitude of the 
effect of these efforts on the reduction of their populations (if 
any), as well as the consequences for biodiversity conserva-
tion, remains a challenge. With respect to free-ranging cats 
and dogs, management actions have not been undertaken 
because the hunting law in Chile (Ministry of Agriculture, 
Law No. 19.473) only encompasses wild and feral animals, 
not free-ranging pets or abandoned animals. Unfortunately, 
distinguishing feral dogs (i.e., self-sustaining animals, in the 
sense of Vanak and Gompper 2009) from other categories 

Fig. 5  Areas of invasion risk displayed by an invasiveness index 
(0–1) calculated as the proportion of species that could be established 
in each pixel (1  km spatial resolution) of the Cape Horn Biosphere 
Reserve based on the presence/absence output models calculated 
from the current invasive species distributions. The index ranges from 

0 (no potential invasiveness) to 1 (highest suitable habitat for all inva-
sive species). The final map shows from bright to dark - least to high-
est - those areas of the reserve that are vulnerable to the expansion of 
invasive species from established areas
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of stray dogs is difficult (Green and Gipson 1994) and may 
not be practical for management purposes (Villatoro et al. 
2019). The same applies for cats. For example, in the case 
of evidence of reproduction in cats on Picton Island (Fig. 4), 
it is unknown whether the mother was born in the wild and 
whether the kittens will survive. Thus, in a strict sense, we 
cannot conclude from our data that there is a truly feral cat 
population on Picton, or elsewhere in the CHBR. However, 
both, free-ranging dogs and cats are clearly present in the 
CHBR. Despite the fact that the presence of feral individu-
als cannot be confirmed or dismissed, it is clear that owned 
animals are an important part of free-roaming dogs and cats 
in the study area (Schüttler et al. 2018). Therefore, from 
a conservation perspective, the key point is the lack of 
responsibility towards free-ranging pets and especially their 
impacts on wild animals (Villatoro et al. 2019), independ-
ent of their position in the feral-owned continuum. A new 
law on responsible pet ownership (Ministry of Health 2017, 
Law No. 21.020) should trigger legal norms at a regional 
scale that might be helpful for increasing the restriction of 
pet movement, while awaiting a legal, societal, and ethical 
solution for the control of unowned cats and dogs.

Based on our findings, we derived the following recom-
mendations for preventing the arrival of new species and 
dispersion of established species within the CHBR: (1) The 
three national parks require implementation (i.e., funding, 
park rangers based on-site, regulated access of people and 
pets, etc.) to pass from the status of paper parks to actively 
managed protected areas; (2) awareness-raising among ves-
sel owners and rodent/mink traps in boats are possible pre-
vention measures to reduce their human-mediated spread; 
and (3) the transition and buffer zones of the CHBR require 
more conservation actions (e.g., environmental education 
about invasive species, responsible pet ownership, etc.) to 
fulfill their role of minimizing negative effects of human-
induced activities on the core area (see the Madrid Action 
Plan, UNESCO 2008). Finally, future scientific needs 
include the establishment of a systematic georeferenced 
long-term monitoring of invasive species in the CHBR with 
regular rodent trapping and camera-trap grids installed with 
a special focus on the Cape Horn National Park. We also 
recommend harnessing the significant potential of commu-
nity-based monitoring to help track changes in biodiversity 
(gap in South America, Chandler et al. 2017), especially in 
remote regions with challenging research and monitoring 
conditions.

Ideally, these efforts should be placed in a broader frame-
work of conservation management in the terrestrial sub-Ant-
arctic ecosystems, including the development of common 
best-practice guidelines and an international conservation 
forum as suggested by de Villiers et al. (2006) for the South-
ern Ocean Islands.
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